47 research outputs found

    An Analysis of Data Quality Defects in Podcasting Systems

    Get PDF
    Podcasting has emerged as an asynchronous delay-tolerant method for the distribution of multimedia files through a network. Although podcasting has become a popular Internet application, users encounter frequent information quality problems in podcasting systems. To better understand the severity of these quality problems, we have applied the Total Data Quality Management methodology to podcasting. Through the application of this methodology we have quantified the data quality problems inherent within podcasting metadata, and performed an analysis that maps specific metadata defects to failures in popular commercial podcasting platforms. Furthermore, we extracted the Really Simple Syndication (RSS) feeds from the iTunes catalog for the purpose of performing the most comprehensive measurement of podcasting metadata to date. From these findings we attempted to improve the quality of podcasting data through the creation of a metadata validation tool - PodCop. PodCop extends existing RSS validation tools and encapsulates validation rules specific to the context of podcasting. We believe PodCop is the first attempt at improving the overall health of the podcasting ecosyste

    An Analysis of Data Quality Defects in Podcasting Systems

    Get PDF
    Podcasting has emerged as an asynchronous delay-tolerant method for the distribution of multimedia files through a network. Although podcasting has become a popular Internet application, users encounter frequent information quality problems in podcasting systems. To better understand the severity of these quality problems, we have applied the Total Data Quality Management methodology to podcasting. Through the application of this methodology we have quantified the data quality problems inherent within podcasting metadata, and performed an analysis that maps specific metadata defects to failures in popular commercial podcasting platforms. Furthermore, we extracted the Really Simple Syndication (RSS) feeds from the iTunes catalog for the purpose of performing the most comprehensive measurement of podcasting metadata to date. From these findings we attempted to improve the quality of podcasting data through the creation of a metadata validation tool - PodCop. PodCop extends existing RSS validation tools and encapsulates validation rules specific to the context of podcasting. We believe PodCop is the first attempt at improving the overall health of the podcasting ecosyste

    An Analysis of Data Quality Defects in Podcasting Systems

    Get PDF
    Podcasting has emerged as an asynchronous delay-tolerant method for the distribution of multimedia files through a network. Although podcasting has become a popular Internet application, users encounter frequent information quality problems in podcasting systems. To better understand the severity of these quality problems, we have applied the Total Data Quality Management methodology to podcasting. Through the application of this methodology we have quantified the data quality problems inherent within podcasting metadata, and performed an analysis that maps specific metadata defects to failures in popular commercial podcasting platforms. Furthermore, we extracted the Really Simple Syndication (RSS) feeds from the iTunes catalog for the purpose of performing the most comprehensive measurement of podcasting metadata to date. From these findings we attempted to improve the quality of podcasting data through the creation of a metadata validation tool - PodCop. PodCop extends existing RSS validation tools and encapsulates validation rules specific to the context of podcasting. We believe PodCop is the first attempt at improving the overall health of the podcasting ecosyste

    Heme Oxygenase-1 Accelerates Cutaneous Wound Healing in Mice

    Get PDF
    Heme oxygenase-1 (HO-1), a cytoprotective, pro-angiogenic and anti-inflammatory enzyme, is strongly induced in injured tissues. Our aim was to clarify its role in cutaneous wound healing. In wild type mice, maximal expression of HO-1 in the skin was observed on the 2nd and 3rd days after wounding. Inhibition of HO-1 by tin protoporphyrin-IX resulted in retardation of wound closure. Healing was also delayed in HO-1 deficient mice, where lack of HO-1 could lead to complete suppression of reepithelialization and to formation of extensive skin lesions, accompanied by impaired neovascularization. Experiments performed in transgenic mice bearing HO-1 under control of keratin 14 promoter showed that increased level of HO-1 in keratinocytes is enough to improve the neovascularization and hasten the closure of wounds. Importantly, induction of HO-1 in wounded skin was relatively weak and delayed in diabetic (db/db) mice, in which also angiogenesis and wound closure were impaired. In such animals local delivery of HO-1 transgene using adenoviral vectors accelerated the wound healing and increased the vascularization. In summary, induction of HO-1 is necessary for efficient wound closure and neovascularization. Impaired wound healing in diabetic mice may be associated with delayed HO-1 upregulation and can be improved by HO-1 gene transfer

    Immunopathological signatures in multisystem inflammatory syndrome in children and pediatric COVID-19

    Get PDF
    : Pediatric Coronavirus Disease 2019 (pCOVID-19) is rarely severe; however, a minority of children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might develop multisystem inflammatory syndrome in children (MIS-C), with substantial morbidity. In this longitudinal multi-institutional study, we applied multi-omics (analysis of soluble biomarkers, proteomics, single-cell gene expression and immune repertoire analysis) to profile children with COVID-19 (n = 110) and MIS-C (n = 76), along with pediatric healthy controls (pHCs; n = 76). pCOVID-19 was characterized by robust type I interferon (IFN) responses, whereas prominent type II IFN-dependent and NF-κB-dependent signatures, matrisome activation and increased levels of circulating spike protein were detected in MIS-C, with no correlation with SARS-CoV-2 PCR status around the time of admission. Transient expansion of TRBV11-2 T cell clonotypes in MIS-C was associated with signatures of inflammation and T cell activation. The association of MIS-C with the combination of HLA A*02, B*35 and C*04 alleles suggests genetic susceptibility. MIS-C B cells showed higher mutation load than pCOVID-19 and pHC. These results identify distinct immunopathological signatures in pCOVID-19 and MIS-C that might help better define the pathophysiology of these disorders and guide therapy

    Performance of the ALICE experiment at the CERN LHC

    Get PDF
    ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables

    Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at 2.76 TeV

    Get PDF
    We report on the first measurement of the triangular v3v_3, quadrangular v4v_4, and pentagonal v5v_5 charged particle flow in Pb-Pb collisions at 2.76 TeV measured with the ALICE detector at the CERN Large Hadron Collider. We show that the triangular flow can be described in terms of the initial spatial anisotropy and its fluctuations, which provides strong constraints on its origin. In the most central events, where the elliptic flow v2v_2 and v3v_3 have similar magnitude, a double peaked structure in the two-particle azimuthal correlations is observed, which is often interpreted as a Mach cone response to fast partons. We show that this structure can be naturally explained from the measured anisotropic flow Fourier coefficients.Comment: 10 pages, 4 figures, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/387

    Multiplicity dependence of jet-like two-particle correlation structures in p-Pb collisions at 1asNN=5.02 TeV

    Get PDF
    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p\u2013Pb collisions at a nucleon\u2013nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 < pT,assoc < pT,trig < 5.0 GeV/c is examined, to include correlations induced by jets originating from low momentum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range |\u3b7| < 0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p\u2013Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton\u2013parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p\u2013Pb collisions. Further, the number scales only in the intermediate multiplicity region with the number of binary nucleon\u2013nucleon collisions estimated with a Glauber Monte-Carlo simulation
    corecore